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In this paper we introduce the notion of generalized physical and SRB measures. These
measures naturally generalize classical physical and SRB measures to measures which
are supported on invariant sets that are not necessarily attractors. We then perform
a detailed case study of these measures for hyperbolic Hénon maps. For this class
of systems we are able to develop a complete theory about the existence, uniqueness,
finiteness, and properties of these natural measures. Moreover, we derive a classification
for the existence of a measure of full dimension. We also consider general hyperbolic
surface diffeomorphisms and discuss possible extensions of, as well as the differences to,
the results for Hénon maps. Finally, we study the regular dependence of the dimension
of the generalized physical/SRB measure on the diffeomorphism. For the proofs we
apply various techniques from smooth ergodic theory including the thermodynamic
formalism.
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1. INTRODUCTION

1.1. Motivation

It is a long-term goal in dynamical systems to understand the typical dynamics
of a given system. Here “typical” usually means for a set of points of full measure
with respect to an invariant probability measure. However, for many systems the
set of invariant measures is rather large. This raises the question as to which
invariant measure is the natural choice to consider. From an applications point of
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view, the only measures which can actually be “observed” are those for which
the set of points, whose orbit distribution converges to the measure, has positive
volume. These measures are called physical (or sometimes also natural) measures.

To make this mathematically precise, let us consider a C1+ε-diffeomorphism
f : M → M on a smooth d-dimensional Riemannian manifold M, and let � be a
compact f-invariant set. Denote by M the space of f-invariant probability measures
on � endowed with the weak* topology. Moreover, let ME denote the subset of
ergodic measures. For µ ∈ M we define the basin of µ by

B+(µ) =
{

x ∈ M :
1

n

n−1∑
i=0

δ f i (x) → µ as n → ∞
}

, (1)

where δ f i (x) denotes the Dirac measure on f i (x). Analogously, we denote by
B−(µ) the basin of µ with respect to f −1. The basin of µ is sometimes also called
the set of future generic points of µ, see (9) and (16). A measure µ ∈ M is called a
physical measure if B+(µ) has positive Lebesgue measure. Moreover, µ is called
a SRB measure (standing for Sinai, Ruelle, Bowen) if it has at least on positive
Lyapunov exponent and its corresponding conditional measures on the unstable
manifolds are absolutely continuous with respect to the Lebesgue measure. It
turns out that for many systems the notion of physical measures coincides with
that of SRB measures. The existence of physical and SRB measures is understood
in the case of uniformly hyperbolic systems due to the classical work of Bowen
and Ruelle, and also for some non-uniformly hyperbolic systems, in particular for
Hénon maps which are small perturbations of one-dimensional maps due to the
celebrated work of Benedicks and Carleson (7) and Benedicks and Young(8). In all
of these cases the set � is an attractor. We refer to the expository article(28) for
more details about physical and SRB measures and further references. Since the
basin of any invariant measure must be contained in the stable set W s(�) of � it
is clear that if the Hausdorff dimension dimH W s(�) of W s(�) is strictly smaller
than d, then no physical measure exists. This is for example the case when � is a
uniformly hyperbolic set of a C2-diffeomorphism which is not an attractor, see(23).
However, it is still possible that there exists an invariant measure whose basin is
as large as possible. This leads to the following definition. We say that µ ∈ ME is
a generalized physical measure if

dimH B+(µ) = dimH W s(�). (2)

Moreover, we call µ ∈ ME a generalized SRB measure if it has at least one
positive Lyapunov exponent and the corresponding conditional measures on the
unstable manifolds are absolutely continuous with respect to the t-dimensional
Hausdorff measure, where t denotes the Hausdorff dimension of the intersection
of the unstable manifolds with �. We refer to Section 3 for more details. Obviously,
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physical and SRB measures are also generalized physical and SRB measures, but
the converse is, in general, not true.

Since f is a diffeomorphism, we can also consider the set of points which are
generic for µ under forward as well as under backward iteration. We define the
two-sided basin of µ ∈ M by B(µ) = B+(µ) ∩ B−(µ). We say that µ ∈ ME is a
generalized two-sided physical measure if B(µ) is as large as possible, that is,

dimH B(µ) = sup
ν∈ME

dimH B(ν). (3)

We denote by dimH µ the dimension of the measure µ (see Section 2). We note
that by Birkhoff’s ergodic theorem the basin as well as the two-sided basin of
µ ∈ ME are sets of full measure. Thus, for all µ ∈ ME , we have that

dimH µ ≤ dimH B(µ) ≤ dimH B±(µ) ∩ �. (4)

The main purpose of this paper is to carry out a case study of the existence
and uniqueness of the above discussed natural measures in the case of hyper-
bolic Hénon maps, as well as to discuss possible extensions and differences when
considering measures supported on general hyperbolic sets of surface diffeomor-
phisms. Furthermore, we analyze the regular dependence of the dimension of the
natural measures on the diffeomorphism.

We shall now describe our results in the case of hyperbolic Hénon maps. For
the corresponding results in the case of general hyperbolic sets on surfaces we
refer to Section 6.

1.2. Statement of the Main Results for Hénon Maps

A Hénon map f = fa,b is a diffeomorphism of R
2, which may be written as

f (x, y) = (a − x2 − by, x), (5)

where (a, b) ∈ R × R \ {0}. Let � ⊂ R
2 denote the set of points with bounded

forward and backward orbit. We say that f is hyperbolic if � is a hyperbolic set
of f. Moreover, we say that f is of maximal entropy if htop( f |�) = log 2. We will
always assume the f is a hyperbolic Hénon map having maximal entropy. In this
case f |� is topologically conjugate to the full 2-shift, and � is a horseshoe of f.
In particular, f does not admit a classical physical or SRB measure. Hyperbolic
Hénon maps having maximal entropy were discovered by Devaney and Nitecki(10).
We call the corresponding set of parameters the Devaney-Nitecki horseshoe locus.
For example, it is known that if a > 2(1 + |b|)2, then f = fa,b belongs to the
Devaney–Nitecki horseshoe locus, see(6). We refer to (6) for more details about
the Devaney–Nitecki horseshoe locus. The following result is a consequence of
Theorem 8 and Corollary 8 in the text.
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Theorem 1. Let f be a hyperbolic Hénon map having maximal entropy. Then f
admits a unique generalized physical measure µ+, and µ+ is a Gibbs measure.
Moreover, µ+ is uniquely determined by each of the following properties:

(i) µ+ is the unique generalized SRB measure of f;
(ii) dimH B+(µ+) ∩ � = dimH �;

(iii) dimH B+(µ+) = dimH W u
ε (x) ∩ � + 1.

We note that the analogue of Theorem 1 holds also in the context of general
hyperbolic sets on surfaces (see Theorem 15 for the precise statement). Note that
f −1 is also a hyperbolic Hénon map having maximal entropy. Therefore, Theorem
1 also applies to f −1. We denote the generalized physical measure of f −1 by µ−.

It is well-known that for hyperbolic attractors the equilibrium measure of
the potential − log | det D f |Eu | is the unique physical respectively SRB measure.
Corollary 5 on the other hand shows that for hyperbolic Hénon maps this measure
does not coincide with the generalized physical respectively SRB measure. A
related result holds in the context of general non-attracting hyperbolic sets of
surface diffeomorphisms, namely it is shown in Corollary 10 that the generalized
physical respectively SRB measure coincides with the equilibrium measure of
the potential − log | det D f |Eu | if and only if log | det D f |Eu | is cohomologous
to a constant. In particular, these measures are distinct for an open and dense set
(with respect to the C1-topology) of surface diffeomorphisms with a non-attracting
hyperbolic set (see Corollary 11).

Recall that µ ∈ ME is an ergodic measure of maximal dimension if

dimH µ = sup
ν∈M

dimH ν.

These measures have been recently studied by Barreira and Wolf in (2). The next
theorem establishes the existence of generalized two-sided physical measures. It
compiles results from Corollaries 6 and 8.

Theorem 2. Let f be a hyperbolic Hénon map having maximal entropy. Then f
admits at least one and most finitely many generalized two-sided physical mea-
sures. Moreover, µ is a generalized two-sided physical measure if and only if µ is
an ergodic measure of maximal dimension.

We note that a related result holds also in the context of general hyperbolic surface
diffeomorphisms (see Theorem 15). However, we are not able anymore to conclude
the finiteness of the generalized two-sided physical measures.

So far we have established the existence of different classes of natural mea-
sures. The question concerning the relation between these measures is addressed
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in the next theorem. It combines results from Corollaries 6, 7 as well as Theorems
8, 10, 11 and 12.

Theorem 3. Let f be a hyperbolic Hénon map having maximal entropy, and let
µ+, µ− and µ be as in Theorems 1 and 2. Then

(i) If f preserves volume, then µ = µ+ = µ−. Furthermore, µ is the unique
ergodic measure of full dimension for f, that is, dimH µ = dimH �.

(ii) If f is not volume preserving, then µ,µ+ and µ− are pairwise disjoint.
Moreover, f admits no measure of full dimension.

To the best of our knowledge Theorem 3 is the first higher-dimensional result which
provides a final classification for the existence of a measure of full dimension
within a non-trivial family of maps.

Another outcome of this paper is the characterization of the strictness of the
inequalities in [4]. Namely, we show that if f is a hyperbolic Hénon map having
maximal entropy, then dimH µ = dimH B(µ) for all µ ∈ ME (see Theorem 9). On
the other hand, dimH B(µ) = dimH B+(µ) ∩ � if and only if µ is the generalized
physical measure of f −1. This follows from Theorems 7, 8 and 9.

We note that Theorem 3 (except the simple part (i)) has no immediate exten-
sion to the case of general hyperbolic surface diffeomorphisms. The reason for
this is that in the case of Hénon maps, part (ii) crucially depends on the a certain
cohomology relation which is for general hyperbolic surface diffeomorphisms not
satisfied.

The paper is organized as follows. In Section 2 we review some known facts
about Hénon maps. Furthermore, we discuss the ergodic and dimension theory
of hyperbolic Hénon maps. Section 3 establishes the existence and uniqueness
of generalized physical and SRB measures for Hénon maps. In Section 4 we
discuss the relation between generalized two-sided physical measures and ergodic
measures of maximal dimension in the case of Hénon maps. The existence of
measures of maximal and full dimension is analyzed in Section 5. Finally, we study
in Section 7 general hyperbolic surface diffeomorphisms and discuss extensions of
(and differences to) the results derived for Hénon maps. We also analyze the regular
dependence of the dimension of the natural measures on the diffeomorphism.

2. HÉNON MAPS

2.1. Notation and Preliminaries

We start by recalling some standard facts about Hénon maps. Let f = fa,b

be a Hénon map (see 5). Let � ⊂ R
2 the set of points with bounded forward and

backward orbit. It is known that � is a compact f-invariant set (see (11)). We define
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the stable/unstable set of � by

W s/u(�) = {p ∈ R
2 : dist( f ±n(p),�) → 0 for n → ∞}.

It follows from the work of (5) that W s/u(�) is a closed set which coincides
with the set of points with bounded forward/backward orbit. Moreover, if p ∈
R

2 \ W s/u(�), then the forward/backward orbit of p converges to infinity. The
map f −1 is given by the formula f −1(x, y) = (y, b−1(a − y2 − x)). Conjugating
f −1 with L(x, y) = (by, bx), we obtain a map of the form (5). Therefore, f −1 is
also a Hénon map.

We note that the function det D f is constant in R
2. Therefore, we can re-

strict our considerations to the volume decreasing case (| det D f | < 1), and to the
volume preserving case (| det D f | = 1), because in the volume increasing case
(| det D f | > 1), we can consider f −1.

Let htop( f ) denote the topological entropy of the map f |�. A priori htop( f )
can attain every value in [0, log 2] (see (11)). Following (5) we say that f is of
maximal entropy if htop( f ) = log 2. In this case f has precisely 2n distinct periodic
points with period n all of which are saddle points. Moreover, � is a Cantor
set which coincides with the closure of the periodic points of f. We say that f is
hyperbolic if � is a hyperbolic set of f. This means that there exists a continuous
Df-invariant splitting T�R

2 = Eu ⊕ Es such that D f |Eu is uniformly expanding
and D f |Es is uniformly contracting. Hyperbolicity implies that we can associate
with each point p ∈ � its local unstable/stable manifold W u/s

ε (p). Moreover, we
denote by W u/s(p) the global unstable/stable manifolds of p. It follows that f is
an Axiom A diffeomorphism and that � is the unique basic set of f (see (5) for
more details). We would like to point out that there are Axiom A Hénon maps
which are not of maximal entropy. For example, in (13) the authors discovered an
open set of parameters for which the corresponding Hénon maps are Morse-Smale
diffeomorphisms. In particular, these maps are Axiom A, but have zero topological
entropy.

Standing Assumptions
We now list several properties which will be assumed in the paper whenever

we deal with Hénon maps.

1. f = fa,b is a Hénon diffeomorphism of R
2 with htop( f ) = log 2.

2. � is a hyperbolic set of f.
3. f is non-volume increasing.

We recall that assumption 3 is actually not a restriction since we can also consider
f −1 (see above).
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2.2. Ergodic and Dimension Theory for He′non Maps

We now introduce elements from dimension theory for hyperbolic Hénon
maps. We start by introducing Lyapunov exponents. Let f = fa,b be a hyperbolic
Hénon map having maximal entropy and let M be the space of all f-invariant Borel
probability measures endowed with weak* topology. Note that supp ν ⊂ � for
every ν ∈ M. This makes M to a compact convex space. Let ME ⊂ M denote the
subspace of ergodic measures. Let ν ∈ M. Since � is a hyperbolic set of saddle
type, there are Lyapunov exponents λs(ν) < 0 < λu(ν) with respect to ν given
by the ν-average of the pointwise Lyapunov exponents. Since, Eu and Es are
one-dimensional, it follows that

λu/s(ν) =
∫

log ||D f |Eu/s ||dν. (6)

Moreover, since f has constant Jacobian determinant, we have that

λs(ν) = −λu(ν) + log | det D f |. (7)

We now discuss the Hausdorff dimension of a measure ν. Recall that the Hausdorff
dimension (or simply the dimension) of a measure ν ∈ M is defined by

dimH ν = inf{dimH A : ν(A) = 1}, (8)

where dimH A denotes the Hausdorff dimension of the set. In general the dimen-
sion of ν is strictly smaller than the dimension of its support. We say that ν is a
measure of full dimension if dimH ν = dimH �.

If ν is ergodic, then by Young’s formula (26), we have,

dimH ν = hν( f )

λu(ν)
+ hν( f )

λu(ν) − log | det D f | , (9)

where hν( f ) denotes the measure theoretic entropy of f with respect to ν.
In general, we will deal with measures which are not necessarily ergodic.

However, the following result due to Barreira and Wolf (see (3)) often allows us to
restrict our considerations to the case of ergodic measures.

Theorem 4. Let ν ∈ M. Then

dimH ν = esssup{dimH m : m ∈ M},
where the essential supremum can be taken with respect to any ergodic decompo-
sition τ of ν.

It is a consequence of Theorem 4 (see (3) for more details) that

δ( f )
def= sup{dimH ν : ν ∈ ME } = sup{dimH ν : ν ∈ M}. (10)
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If a measure µ attains the supremum on the right-hand side of (10), that is
dimH µ = δ( f ), we say that µ is a measure of maximal dimension. We refer to the
article (2) for a detailed discussion of the existence and ergodicity of measures of
maximal dimension.

Next we introduce topological pressure. Let C(�) denote the Banach space of
all continuous real valued functions on �. In analogy to physics we call C(�) the
space of potentials. The topological pressure of f |�, denoted by P = P( f |�, .),
is a mapping from C(�) to R (see (18) for the definition). The variational principle
gives the formula

P(ϕ) = sup
ν∈M

(
hν( f ) +

∫
ϕdν

)
. (11)

If a measure νϕ ∈ M achieves the supremum in Eq. (11), that is,

P(ϕ) = hνϕ
( f ) +

∫
ϕdνϕ, (12)

we call it an equilibrium measure of the potential ϕ.
We recall that two functions ϕ,ψ : � → R are said to be cohomologous if

ϕ − ψ = η − η ◦ f for some continuous function η: � → R. In this case we have
P(ψ) = P(ϕ). Given α ∈ (0, 1], let Cα(�) denote the space of Hölder continuous
functions ϕ: � → R with Hölder exponent α. We now list several properties of the
topological pressure which are needed later on (see (18) for details). Let α ∈ (0, 1]
be fixed. Then:

1. The map ϕ 
→ P(ϕ) is convex, and when restricted to Cα(�), it is real-
analytic;

2. Each function ϕ ∈ Cα(�) has a unique equilibrium measure νϕ ∈ M.
Furthermore νϕ is ergodic and given ψ ∈ Cα(�) we have,

d

dt
P(ϕ + tψ)

∣∣∣
t=0

=
∫

�

ψ dνϕ ; (13)

3. For each ϕ,ψ ∈ Cα(�) we have that νϕ = νψ if and only if ϕ − ψ is
cohomologous to a constant;

4. For each ϕ, ψ ∈ Cα(�) and t ∈ R we have,

d2

dt2
P(ϕ + tψ) ≥ 0, (14)

with equality if and only if ψ is cohomologous to a constant.

We have P(0) = htop( f ) = log 2. It follows from the properties above that ν0 is
the unique measure of maximal entropy of f. We now introduce potentials which
are related to the Lyapunov exponents. We define

φu/s : � → R, p 
→ log ||D f (p)|Eu/s
p || (15)
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and the unstable/stable pressure function Pu/s : R → R by

Pu(t) = P(−tφu) and Ps(t) = P(tφs). (16)

Obviously, the functions −φu and φs are strictly negative. This implies that Pu/s

is strictly decreasing.
Since φu/s is Hölder continuous (see (1)), property 1 of the topological pressure

implies that Pu/s is real analytic. Property 2 of the topological pressure implies that
there exist uniquely defined equilibrium measures ν∓tφu/s ∈ M of the potentials
∓tφu/s .

Let S denote the set of all saddle points of f. Note that � = S (see (5)).
For p ∈ S with period n we denote by λu/s(p) the eigenvalues of D f n(p), where
|λs(p)| < 1 < |λu(p)|. Hence,

λu(p)λs(p) = det D f n. (17)

Using (17) and applying Proposition 4.5 of (1), we obtain the following.

Proposition 1. Let t ∈ R. Then

(i) Pu(t) = Ps(t) − t log | det D f |;
(ii) ν−tφu = νtφs .

We will use in the remainder of this paper the notation νt = ν∓tφu/s . This
notation is justified by Proposition 1. We also write λu/s(t) = λu/s(νt ) and h(t) =
hνt ( f ), and consider λu/s and h as real-valued functions of t. Equations (6), (12)
imply

Pu(t) = h(t) − tλu(t). (18)

Therefore, by Proposition 4,

Ps(t) = h(t) − t(λu(t) − log | det D f |). (19)

We will now prove a cohomology property which will be crucial for our results
about Hénon maps.

Proposition 2. Let f = fa,b be a hyperbolic Hénon map having maximal en-
tropy. Then the potential φu is not cohomologous to a constant.

Proof: Assume on the contrary that φu is cohomologous to a constant. Then, by
Proposition 4.5 of (1), there is K > 0 such that

|λu(p)| 1
n(p) = K (20)

for every periodic point p ∈ S with prime period n(p). We will show that (20)
does not hold for all possible parameters (a, b). First we consider the two fixed
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points of f. Set

α1/2 = −(b + 1) ±
√

(b + 1)2 + 4a

2
. (21)

Evidently, the points p = (α1, α1) and q = (α2, α2) are the fixed points of f. Since
htop( f ) = log 2 (f is of maximal entropy), it follows from (5) that that p, q ∈ R

2

and p 
= q. Hence,

a > −(b + 1)2/4. (22)

It is easy to see that λ1/2(p) = −α1 ± √
α1 − b and λ1/2(q) = −α2 ± √

α2 − b
are the eigenvalues of D f (p) and D f (q) respectively. We claim that

|λu(p)| = |α1| +
√

α2
1 − b. (23)

It suffices to show that α2
1 > b, because in this case λu(p) is real. Assume that

α2
1 ≤ b. In this case it follows that |λ1(p)| = |λ2(p)|. Since p is a saddle point, this

is impossible, which proves the claim. Analogously, we can show that

|λu(q)| = |α2| +
√

α2
2 − b. (24)

First, we consider the case |α1| 
= |α2|. In this case it follows from (23) and
(24) that |λu(p)| 
= |λu(q)|. Therefore, (20) does not hold for p and q. Next, we
consider the case |α1| = |α2|. Since p 
= q, we must have α1 = −α2. Therefore,
(21) implies b = −1. Assume from now on that b = −1. Hence, p = (

√
a,

√
a)

and |λu(p)| = √
a + √

a + 1. Obviously, r = (
√

a,−√
a) is a periodic point of f

of period 2. Note that

D f 2(r ) =
(

1 − 4a 2
√

a

−2
√

a 1
.

)
(25)

It follows that λ1/2(r ) = 1 − 2a ± 2
√

a(a − 1) are the eigenvalues of D f 2(r ). The
fact that r is a saddle point (also using 22) implies that a > 1. Hence,

|λu(r )| = 2a − 1 + 2
√

a(a − 1). (26)

Assume that (20) holds for p and r. Then

λu(p)2 = |λu(r )|. (27)

But this would imply that√
a(a − 1) −

√
a(a + 1) = 1, (28)

which is impossible. We conclude that (20) is not true in the case b = −1, which
completes the proof. �
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Next, we consider the functions λu and h.

Lemma 1. The functions λu and h are real analytic. Furthermore, if t0 ≥ 0, then

dλu

dt
(t0) < 0. (29)

In particular, λu is strictly decreasing.

Proof: Let t0 ≥ 0 and φu as in (15). We define potentials ϕ = −t0φu, ψ = −φu

(here we use the notation of (13)). Therefore, application of Equations (6) and
(13) implies

d Pu

dt
(t0) = −λu(νt0 ) = −λu(t0). (30)

Since Pu is real analytic, we obtain that λu is also real analytic. Thus, by (18), h
is also real-analytic. Finally, using (14) and Proposition 2, we conclude that

d2 Pu

dt2
(t0) > 0. (31)

Hence

dλu

dt
(t0) < 0. (32)

�

Hausdorff dimensions of the measures νt . We use the notation �(t) = dimH νt .
Equation (9) yields

�(t) = h(t)

λu(t)
+ h(t)

λu(t) − log | det D f | . (33)

We conclude that � is also a real analytic function. Equations (18), (19) and
Proposition 1 imply

�(t) = 2t + Pu(t)

λu(t)
+ Pu(t) + t log | det D f |

λu(t) − log | det D f | . (34)

An elementary calculation gives the following formula for the derivative of �:

d�

dt
(t0) = −

dλu

dt (t0) [A(t0) + B(t0)]

λu(t0)2(λu(t0) − log | det D f |)2
, (35)

where

A(t0) = Pu(t0)(λu(t0) − log | det D f |)2 (36)
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and

B(t0) = (Pu(t0) + t0 log | det D f |)λu(t0)2. (37)

Hausdorff dimension of the invariant sets. First, we consider the Hausdorff
dimension of �. The following result is a consequence of work of McCluskey
and Manning (17). It provides a formula for the Hausdorff dimension of the unsta-
ble/stable slice in terms of the zeros of the pressure functions.

Theorem 5. Let f be a hyperbolic Hénon map having maximal entropy. Then
tu/s = dimH W u/s

ε (x) ∩ � does not depend on x ∈ �. Furthermore, tu/s is given
by the unique solution of

Pu/s(t) = 0, (38)

and

dimH � = tu + t s . (39)

Equation (38) is called the Bowen-Ruelle formula. We refer to tu/s as the Hausdorff
dimension of the unstable/stable slice. As a consequence of Theorem 5 we obtain
an inequality between tu and t s .

Corollary 1. We have ts, tu < 1. Moreover,

t s ≤ tu log 2

log 2 − tu log | det D f | . (40)

In particular, if f is volume-decreasing, then ts < tu .

Proof: That tu/s < 1 follows from P(∓φu/s) < 0 (see (1)) and Theorem 5. Recall
that f is non-volume increasing. We have Ps(0) = log 2. Moreover, by Proposition
4 and Theorem 5 we have, Ps(tu) = tu log | det D f |. Therefore, since Ps is a
convex function, the graph of Ps lies below the line segment joining (0, log 2) and
(tu, tu log | det D f |). The result follows from Theorem 5. �

It is a consequence of Theorem 5, the variational principle and the uniqueness
of the equilibrium measure of a Hölder continuous potential that

dimH � = tu + t s = sup
ν∈M

(
hν( f )

λu(ν)

)
+ sup

ν∈M

(
−hν( f )

λs(ν)

)
, (41)

where each of the suprema on the right-hand side of the equation is uniquely
attained by the measures νtu and νt s respectively. Hence

dimH � = h(tu)

λu(tu)
− h(t s)

λs(t s)
. (42)
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Equation (42) and the uniqueness of the measures νtu , νt s in Equation (41) imply
that, if there exists an ergodic measure µ of full dimension, then

µ = νtu = νt s . (43)

Thus, we have the following result.

Corollary 2. Assume µ is an ergodic measure of full dimension for f, then
µ = νtu = νt s . In particular, there exists at most one ergodic measure of full
dimension.

Remark. It should be noted that without the assumption of ergodicity, if a
measure of full dimension exists, then it is never unique. For example, if µ is an
ergodic measure of full dimension for f, then every measure ν ∈ M, which has
an ergodic decomposition that puts positive measure on µ, is a measure of full
dimension. This follows from Theorem 4.

Next, we consider the Hausdorff dimension of the stable and unstable set of �.

Theorem 6. dimH W s/u(�) = tu/s + 1.

Proof: The proof is similar to the corresponding proof for polynomial auto-
morphisms of C

2 (see Theorem 4.1 in (29)). Therefore, we provide only a sketch.
Without loss of generality we only consider W s(�). It follows from the Shadowing
Lemma that

W s(�) =
⋃
p∈�

W s(p). (44)

Since � has a local product structure, it suffices to prove that there is ε > 0 such
that

dimH

( ⋃
q∈W u

ε (p)∩�

W s
ε (q)

)
= tu + 1 (45)

for all p ∈ �. We refer to (29) for more details. Let p ∈ �. Set Ap = W u
ε (p) ∩ �.

Following (29), for ε > 0 small enough, there exists a homeomorphism

h : Ap × (−ε,+ε) →
⋃

q∈Ap

W s
ε (q), (46)

with the property that h(q × (−ε,+ε)) = W s
ε (q) for all q ∈ Ap. Moreover, h and

h−1 are α-Hölder continuous for every α ∈ (0, 1). This implies (45). �



1124 Wolf

3. GENERALIZED PHYSICAL AND SRB MEASURES

In this Section we develop the theory of generalized physical and SRB mea-
sures for hyperbolic Hénon maps. We start with some definitions.

Given p ∈ R
2, we consider a sequence of probability measures (νn(p))n∈N

defined by

νn(p) = 1

n

n−1∑
i=0

δ f i (p).

We would like to define what it means that νn(p) → ν ∈ M for n → ∞ also for
points p ∈ R

2 \ �. This can be done in the following way: Let U be a neighborhood
of �. Fix for each φ ∈ C(�) a continuous extension φ̂ : U → R of φ. We say that
(νn(p))n∈N converges to ν ∈ M if

lim
n→∞

1

n

n−1∑
i=0

φ̂( f i (p)) =
∫

φdν (47)

for all φ ∈ C(�). Here we use the convention φ̂( f i (p)) = 0 if f i (p) 
∈ U . It can
be shown that this convergence does not depend on the choice of the extensions φ̂.
Evidently, it is necessary for limn→∞ νn = ν that p ∈ W s(�), because otherwise
limn→∞ f n(p) = ∞.

It follows from Birkhoff’s ergodic theorem that if ν ∈ ME then ν(B+(ν)) = 1
and if ν ∈ M \ ME then ν(B+(ν)) = 0 . This is the reason why we will always
require that our measures are ergodic.

Let ν ∈ M. Then, for ν-almost every p ∈ �, there exists a conditional mea-
sure νp supported on W u

ε (p) such that the system {νp : p ∈ �} de-integrates ν.
More precisely, ∫

φdν =
∫

�

(∫
φdνp

)
dν (48)

for all φ ∈ C(�). We refer to (27) for more details.

Definition 1. Let f be a hyperbolic Hénon map having maximal entropy.
We say that µ ∈ ME is a generalized physical measure for f if dimH B+(µ) =
dimH W s(�). Moreover, we call µ ∈ ME a generalized SRB-measure for f if
for µ-almost every p ∈ � the corresponding conditional measure µp is ab-
solute continuous with respect to the t-dimensional Hausdorff measure, where
t = dimH W u

ε (p) ∩ �.

Remarks.
(i) We note that in the definition of the basin B+(µ) we include points p ∈ R

2

being future generic for µ in the sense of (47).
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(ii) The definitions above include the case of classical physical and SRB mea-
sures. In this case the t-dimensional Hausdorff measure is equivalent to the
Lebesgue measure.

In order to analyze generalized physical and SRB measures we now develop
formulas for the dimension of the basins. We start with an elementary Lemma.

Lemma 2. Let f be a hyperbolic Hénon map having maximal entropy. Let µ ∈
ME and let p ∈ R

2. Then p ∈ B+(µ) if and only if p ∈ W s(q) for some q ∈
� ∩ B+(µ).

Proof: Let p ∈ B+(µ), in particular p ∈ W s(�). Thus, (44) implies that p ∈
W s(q) for some q ∈ �. We conclude that there exist constants c > 0 and 0 < γ <

1 such that

| f n(p) − f n(q)| < cγ n (49)

for all n ∈ N. Let ψ ∈ C(�, R) and n ∈ N. Then∣∣∣∣ 1
n

n−1∑
k=0

ψ( f k(q)) − ∫
ψdµ

∣∣∣∣
≤

∣∣∣∣ 1
n

n−1∑
k=0

ψ( f k(q)) − 1
n

n−1∑
k=0

ψ̂( f k(p))

∣∣∣∣ +
∣∣∣∣ 1

n

n−1∑
k=0

ψ̂( f k(p)) − ∫
ψdµ

∣∣∣∣ (50)

Using that p ∈ B+(µ) and (49), we may conclude that both of the terms in (50)
converge to 0 if n → ∞. Hence q ∈ B+(µ). Conversely, let p ∈ W s(q) for some
q ∈ � ∩ B+(µ). Analogously to (50), we can show that q ∈ B+(µ). �

Recall that tu/s denotes the Hausdorff dimension of the unstable/stable slice.
We will now prove two dimension formulas for the basin of an ergodic measure.

Theorem 7. Let f be a hyperbolic Hénon map having maximal entropy, and let
ν ∈ ME . Then

dimH B+(ν) = hν( f )

λu(ν)
+ 1 (51)

and

dimH B+(ν) ∩ � = hν( f )

λu(ν)
+ t s . (52)
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Proof: First, we prove (51). It follows from Lemma (2) and (44) that

B+(ν) =
⋃
n∈N

f −n

 ⋃
p∈B+(ν)∩�

W s
ε (p)

 . (53)

Since � is a compact set with a local product structure, it is sufficient to show that
if ε > 0 is small enough, then for each p ∈ �,

dimH

 ⋃
q∈Ap

W s
ε (q)

 = hν( f )

λu(ν)
+ 1, (54)

where Ap = W u
ε (p) ∩ B+(ν). Let p ∈ � and let ε > 0 be small. It is a result of

Manning(15) that

dimH Ap = hν( f )

λu(ν)
. (55)

Therefore, (54) can be shown analogously as Theorem 6 by using the α-Hölder
homeomorphism h. Next we prove (52). Let p ∈ � and ε > 0 small. Since � has
a local product structure, the map

P : W u
ε (p) ∩ � × W s

ε (p) ∩ � → �, (q, r ) 
→ W s
ε (q) ∩ W u

ε (r ) (56)

is a well-defined homeomorphism onto a neighborhood Up of p in �. Since
the holonomy maps are Lipschitz continuous, (see (14)), it follows that P is a
bi-Lipschitz map. In particular, P preserves Hausdorff dimension. We claim that

P−1(Up ∩ B+(ν)) = W u
ε (p) ∩ B(ν) × W s

ε (p) ∩ �. (57)

Let (q, r ) ∈ P−1(Up ∩ B+(ν)). Thus, q ∈ W u
ε (p) ∩ �, r ∈ W s

ε (p) ∩ � and
P(q, r ) = W s

ε (q) ∩ W u
ε (r ) ∈ � ∩ B+(ν). Applying Lemma 2, we obtain that

q ∈ B+(ν). This implies that (q, r ) ∈ W u
ε (p) ∩ B+(ν) × W s

ε (p) ∩ �. Conversely,
let (q, r ) ∈ W u

ε (p) ∩ B+(ν) × W s
ε (p) ∩ �. The fact that B+(ν) ⊂ W s(�) implies

q ∈ �. By (56), P(q, r ) ∈ W s
ε (q), and since q ∈ B+(ν), we deduce from Lemma

2 that P(q, r ) ∈ B+(ν), which proves the claim.
Since P preserves Hausdorff dimension, we may conclude that

dimH Up ∩ B+(ν) = dimH

(
W u

ε (p) ∩ B+(ν) × W s
ε (p) ∩ �

)
. (58)

On the other hand, it is well-known that dimH W s
ε (p) ∩ � = dimB W s

ε (p) ∩ �

(see for instance (19)), where dimB denotes the upper box dimension of the set.
Therefore,

dimH

(
W u

ε (p) ∩ B+(ν) × W s
ε (p) ∩ �

)
= dimH W u

ε (p) ∩ B+(ν) + dimH W s
ε (p) ∩ �.

(59)
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Combining (55), (58), (59) with a compactness argument completes the proof of
the theorem. �

Applying Theorem 7 to f −1 gives the following.

Corollary 3. Let f be a hyperbolic Hénon map having maximal entropy, and let
ν ∈ ME . Then

dimH B−(ν) = −hν( f )

λs(ν)
+ 1 (60)

and

dimH B−(ν) ∩ � = −hν( f )

λs(ν)
+ tu . (61)

The following result establishes the existence and uniqueness of the generalized
physical measure.

Theorem 8. Let f be a hyperbolic Hénon map having maximal entropy, and let
µ ∈ ME . Then the following are equivalent:

(i) µ = νtu ;
(ii) µ is a generalized physical measure for f;

(iii) µ is a generalized SRB measure for f;
(iv) dimH B+(µ) ∩ � = dimH �.

Proof: (i) ⇒ (ii) Assume µ = νtu . Thus, by (41), tu = hµ( f )/λu(µ). Therefore,
Theorems 6 and 7 imply that dimH B+(µ) = tu + 1 = dimH W s(�), which is (ii).
(ii) ⇒ (i) Assume µ is a generalized physical measure. Then, Theorem 6 and (51)
imply tu = hµ( f )/λu( f ), and thus (41) implies µ = νtu . (i)⇒ (iii) is well-known,
see for instance Theorem 22.1 of (19). (iii)⇒ (iv) Assume µ is a generalized SRB
measure for f. Then, the corresponding conditional measures µp supported on
the unstable manifolds have Hausdorff dimension tu for µ-almost every p ∈ �.
Therefore, by (39) and (52), dimH B+(µ) ∩ � = dimH �. (iv)⇒ (i) If (iv) holds,
then by (39) and (52), tu = hµ( f )/λu( f ). Therefore, (41) implies µ = νtu . �

We now list two immediate consequences of Theorem 8.

Corollary 4. Let f be as in Theorem 8 and let µ+ be the generalized physical
resp. SRB measure for f. Then µ+ is a Gibbs measure.

Proof: Since µ+ is the equilibrium measure of the Hölder continuous potential,
−tuφu it is a Gibbs measure (see (1)). �
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Corollary 5. Let f be as in Theorem 8 and let µ+ be the generalized physical
resp. SRB measure for f. Then µ+ is distinct from the equilibrium measure of the
potential −φu, that is µ+ 
= ν1.

Proof: Since tu < 1 (see Corollary 5), Lemma 1 implies that νtu 
= ν1. �

Remark. We note that in the case of hyperbolic attractors the equilibrium mea-
sure of the potential −φu is the unique SRB resp. physical measure. Therefore,
Corollary 5 indicates a difference between the theory of hyperbolic attractors and
hyperbolic non-attracting sets. It also follows that our concept of generalized SRB
measures differs from that considered by Ruelle in (22).

4. GENERALIZED TWO-SIDED PHYSICAL MEASURES

AND MEASURES OF MAXIMAL DIMENSION

In this section we show that for hyperbolic Hénon maps generalized two-sided
physical measures are measures of maximal dimension and vice versa. We start
by giving the definition of generalized two-sided physical measures. Recall that
the two-sided basin of a measure µ ∈ M is defined by B(µ) = B+(µ) ∩ B−(µ).
It follows that B(µ) ⊂ W s(�) ∩ W u(�). Hence B(µ) ⊂ �.

Definition 2. Let f be a hyperbolic Hénon map having maximal entropy. We
say that µ ∈ ME is a generalized two-sided physical measure if

dimH B(µ) = sup
ν∈ME

dimH B(ν). (62)

We now prove the main result of this section.

Theorem 9. Let f be a hyperbolic Hénon map having maximal entropy, and let
ν ∈ ME . Then dimH B(ν) = dimH ν.

Proof: Let ν ∈ ME . It follows from Birkhoff’s ergodic theorem (applied to f and
f −1) that ν(B(ν)) = 1. Therefore, dimH ν ≤ dimH B(ν) is a consequence of the
definition of the dimension of the measure ν. To show the reverse inequality we
define for p ∈ � the pointwise dimension of ν at x by

dν(p) = lim
r→0

log ν(B(p, r ))

log r
(63)
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whenever the limit exists. It follows from work of Young (26) (see (19) for a detailed
discussion) that if p ∈ B(ν) then dν(p) exists and dν(p) = dimH ν. Therefore,
dimH B(ν) ≤ dimH ν is a consequence of Theorem 7.2 in (19). �

Remark. We note that there is an alternative way to prove Theorem 9. Namely,
one can combine Manning’s formulas for W u/s

ε (p) ∩ B±(ν) (see (16)) with the fact
that � has a bi-Lipschitz continuous product structure.

The following is an immediate consequence of Theorem 9 and (10).

Corollary 6. Let f be a hyperbolic Hénon map having maximal entropy, and let
µ ∈ ME . Then µ is a generalized two-sided physical measure if and only if µ is
an ergodic measure of maximal dimension. Moreover, µ is an ergodic measure of
full dimension if and only if dimH B(µ) = dimH �.

5. MEASURES OF MAXIMAL AND FULL DIMENSION

In this section we study ergodic measures of maximal and full dimension in
the case of hyperbolic Hénon maps. First, we consider measures of full dimension.
The following result is known (see (12) and (2)). For completeness, we provide a
short proof.

Theorem 10. Let f be hyperbolic volume-preserving Hénon map having maximal
entropy. Then tu = t s , and νtu is the unique ergodic measure of full dimension
for f.

Proof: Since | det D f | = 1, Proposition 4 (i) implies that Pu = Ps . Thus,
by Theorem 5, tu = t s . Applying Equations (9) and (42), we conclude that
dimH νtu = dimH �, which implies that νtu is the unique ergodic measure of full
dimension. �

We now consider the volume decreasing case.

Theorem 11. Let f be a volume decreasing hyperbolic Hénon map having max-
imal entropy. Then f admits no ergodic measure of full dimension.

Proof: Assume on the contrary that µ is an ergodic measure of full dimension
for f. Then, by Theorem 2, µ = νtu = νt s . On the other hand, Corollary 1 im-
plies t s < tu . But this contradicts the fact that λu(t) is strictly decreasing, see
Lemma 1. �
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We now establish the existence of ergodic measures of maximal dimension.
Since a hyperbolic Hénon map f having maximal entropy is an Axiom. A surface
diffeomorphism with a unique basic set �, the existence of an ergodic measure of
maximal dimension follows already from work of Barreira and Wolf in (2). How-
ever, the proof in (2) is technically difficult, and does not provide all information
about the measures of maximal dimension. Using that f has constant Jacobian, we
are able to present in the case of Hénon maps a simplified approach. As before,
we start with the volume preserving case.

Corollary 7. Let f be a volume preserving hyperbolic Hénon map having max-
imal entropy. Then νtu is the unique ergodic measure of maximal dimension
for f.

Proof: It follows from Corollary 5 and Theorem 10 that νtu is the unique ergodic
measure of full dimension of f. By definition, every ergodic measure of full
dimension is also an ergodic measure of maximal dimension. �

We now consider the volume decreasing case.

Theorem 12. Let f be a volume decreasing hyperbolic Hénon map having max-
imal entropy. Then there exists an ergodic measure of maximal dimension for f.
If µ is an ergodic measure of maximal dimension for f, then µ = νt for some
ts < t < tu . Moreover, there are at most finitely many ergodic measures of maxi-
mal dimension for f.

Proof: Let f be a volume decreasing hyperbolic Hénon map having maximal
entropy. Then, by Corollary 5, t s < tu . Moreover, it follows from (31) and
Proposition 1 (i) that the pressure functions Pu and Ps are not affine. Recall that
�(t) = dimH νt .

Claim 1. There exists ε > 0 such that � is strictly increasing on [0, t s + ε) and
strictly decreasing on (tu − ε,∞).
To prove claim 1, we first notice that Theorem 5 and the fact that Pu/s are
strictly decreasing functions imply that Ps(t) > 0 for all t ∈ [0, t s). Analogously,
Pu(t) > 0 for all t ∈ [0, tu). We conclude from Lemma 1, Equation (35) and an
elementary continuity argument that there exists ε > 0 such that

d�

dt
> 0 (64)

in [0, t s + ε). Therefore, �(t) is strictly increasing in [0, t s + ε). Analogously, we
can show that there is ε > 0 such that �(t) is strictly decreasing in (tu − ε,∞),
which prove the claim.
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Claim 1 implies that there is tmax ∈ [t s + ε, tu − ε] such that

dimH νtmax = sup
t≥0

dimH νt . (65)

Claim 2. The measure νtmax is a measure of maximal dimension.
Let (νk)k∈N be a sequence of measures in M such that

lim
k→∞

dimH νk = δ( f ). (66)

It follows from (10) that we can assume that all measures νk are ergodic. Using
claim 1, we may assume that dimH ν0 < dimH νk for all k ∈ N. Recall that ν0 is
the unique measure of maximal entropy of f. Equation (9) implies that

λu(0) = λu(ν0) > λu(νk) (67)

for all k ∈ N. Again by claim 1, we may assume that dimH νtu < dimH νk for all
k ∈ N. It follows from (41) that

hνk ( f )

λu(νk)
<

hνtu ( f )

λu(νtu )
(68)

for all k ∈ N. Therefore, by (9),

hνk ( f )

λu(νk) − log | det D f | >
hνtu ( f )

λu(νtu ) − log | det D f | (69)

for all k ∈ N. Equations. (68), (69) imply hνk ( f ) > hνtu ( f ), and therefore again
by Equation (68) we obtain that

λu(νk) > λu(νtu ) (70)

for all k ∈ N. Since λu is a continuous function on M, Equations (67), (70) imply
that for all k ∈ N there exists tk ∈ (0, tu) such that

λu(νk) = λu(νtk ). (71)

Thus, the variational principle (11) implies

hνk ( f ) ≤ hνtk
( f ), (72)

hence

dimH νk ≤ dimH νtk (73)

for all k ∈ N. This implies

dimH νk ≤ dimH νtmax (74)

for all k ∈ N. We conclude that νtmax is an ergodic measure of maximal dimension.

Claim 3. For every ergodic measure µ of maximal dimension there exists
t s < t < tu such that µ = νt .
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Let µ be an ergodic measure of maximal dimension. We apply to µ (instead
of νk) the same argumentation as in the proof of claim 2. We obtain that there
exists t ∈ (0, tu) such that λu(µ) = λu(νt ). Since dimH µ ≥ dimH νt , we deduce
from equation (9) that hµ( f ) ≥ hνt ( f ). On the other hand, since νt is the equi-
librium measure of the potential −tφu , we may conclude from (11) and (12)
that hµ( f ) ≤ hνt ( f ). Hence hµ( f ) = hνt ( f ). Therefore, the uniqueness of the
equilibrium measure of the potential −tφu implies µ = νt . Claim 1 implies that
t ∈ (t s, tu), and claim 3 is proven. Finally, since the non-constant real analytic func-
tion t 
→ dimH νt can have only finitely many maxima in [t s, tu], we conclude that
f admits at most finitely many ergodic measures of maximal dimension. �

Remarks.

(i) It follows from Young’s formula (9) that the map ν 
→ dimH ν is upper
semi-continuous on ME . However, since ME is a dense subset of M, see
(9) (in particular ME is not closed), this does not imply the existence of an
ergodic measure of maximal dimension.

(ii) We note that without the assumption of ergodicity there are infinitely
many measures of maximal dimension. Namely, if µ is an ergodic
measure of maximal dimension, then any measure ν ∈ M, which has an
ergodic decomposition putting positive measure on µ, is also a measure
of maximal dimension. This follows from Theorem 4.

(iii) It follows from Theorems 11 and 12 that if f is non-volume preserving,
then f does also not admit a non-ergodic measure of full dimension.

(iv) We would like to point out that we have applied techniques from (25) in the
proof of Theorem 12.

The following is a consequence of Corollaries 6 and 7 and Theorem 12.

Corollary 8. Let f be a hyperbolic Hénon map having maximal entropy. Then
f admits at least one and at most finitely many generalized two-sided physical
measures. Moreover, if f preserves volume, then f has an unique generalized two-
sided physical measure.

6. GENERALIZED PHYSICAL AND SRB MEASURES

FOR HYPERBOLIC SETS ON SURFACES

In this section we consider general hyperbolic sets of surface diffeomorphisms
and discuss extensions of, as well as differences to, Theorems 1-3. Furthermore,
we study the regular dependence of the dimension of the generalized physical
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and SRB measures on the diffeomorphism. Let f be a C1+ε-diffeomorphism on a
smooth surface M, and let � ⊂ M be a locally maximal hyperbolic set of f such that
f |� is topologically mixing. By � being hyperbolic we mean that � is compact,
f-invariant and there exists a continuous Df-invariant splitting T�M = Eu ⊕ Es

such that D f |Eu is uniformly expanding and D f |Es is uniformly contracting. We
note that this setup naturally occurs in the case of Axiom A diffeomorphisms on
compact surfaces. Indeed, by spectral decomposition, the non-wandering set of
such a map f can be decomposed into finitely many basic sets, for each of which a
certain iterate of f is topologically mixing. Following (1) we say that � is an attractor
if there are arbitrarily small neighborhoods U of � such that f (U ) ⊂ U . Otherwise,
we say that � is non-attracting. As mentioned in the introduction physical and
SRB measures are well-understood in the case of hyperbolic attractors. Therefore,
we focus here on the non-attracting case. To avoid trivialities we also may assume
that � is of saddle-type (i.e. dim Eu/s = 1), because otherwise � is simply a
repelling periodic orbit. Recall that M denotes the space of all f-invariant Borel
probability measures on �, and ME ⊂ M the subset of ergodic measures (see
Section 1.1). We use the definitions of generalized (two-sided) physical and SRB
measures on � from Section 1.1. Furthermore, we continue to use the notations
from Section 2.2 (e.g. φu/s, Pu/s(t), λu/s(t), etc.) for f and �. Given p, q ∈ R

we write Q(p, q) = P(−pφu + qφs), where P denotes the topological pressure
of f |�. Hence Pu(t) = Q(t, 0) and Ps(t) = Q(0, t) for all t ∈ R. Moreover, we
denote by νp,q the equilibrium measure of the potential −pφu + qφs . We note that
even though the general properties of the pressure functions discussed in Section
2.2 remain true Propositions 1, 2 do not hold in this more general setup.

6.1. Existence and Uniqueness

We are now in the situation to state our main result concerning the existence
and uniqueness of generalized physical measures.

Theorem 13. Let f be a C1+ε-surface diffeomorphism, and let � be a locally max-
imal non-attracting hyperbolic set of saddle-type such that f |� is topologically
mixing. Then f has a unique generalized physical measure µ+ on �. Moreover,
µ+ is uniquely determined by each of the following properties:

(i) µ+ = νtu ,0;
(ii) µ+ is the unique generalized SRB measure of f on �;

(iii) dimH B+(µ+) ∩ � = dimH �;
(iv) dimH B+(µ+) = dimH W u

ε (x) ∩ � + 1.

Proof: The proof is analogous to that in the case of hyperbolic Hénon maps. The
only difference occurs in the proof of Theorem 6 where we can apply the fact that
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the holonomy maps are of class C1+α (see [20]) in order to prove that the map h
defined in (46) is bi-Lipschitz continuous. �

Analogously as in the case of hyperbolic Hénon maps Theorem 13 also holds
for f −1. We denote the corresponding generalized physical measure by µ−. We
now list several consequences of Theorem 13.

Corollary 9. Let f,� and µ+ be as in Theorem 13. Then µ+ is a Gibbs measure.

Proof: Since µ+ is the equilibrium measure of the Hölder continuous potential
−tuφu it is a Gibbs measure (see (1)). �

Recall that if � is a hyperbolic attractor then the equilibrium measure of the
potential −φu (i.e. ν1,0) is the unique physical as well as SRB measure for f on �.
As a consequence of Theorem 13 we obtain that this result, in general, does not
hold for non-attracting sets.

Corollary 10. Let f,� and µ+ be as in Theorem 13. Then the following are
equivalent:

(i) µ+ = ν1,0;
(ii) φu is cohomologous to a constant.

Proof: Using that µ+ = νtu ,0 and tu < 1 the result follows from [1, Proposition
4.5]. �

Clearly, φu not being cohomologous to a constant holds for an open and dense
set of maps (with respect to the C1-topology) in the space of C1+ε diffeomorphisms
on M having a locally maximal non-attracting hyperbolic set. Thus, we obtain the
following:

Corollary 11. µ+( f ) 
= ν1,0( f ) holds for an open and dense set of maps f with
respect to the C1-topology.

In order to discuss generalized two-sided physical measures we need the fol-
lowing result concerning the existence of ergodic measures of maximal dimension
which was proven in (2).

Theorem 14. Let f be a C1+ε-surface diffeomorphism, and let � be a locally
maximal hyperbolic set such that f |� is topologically mixing. Then there exists
an ergodic measure of maximal dimension on �. Moreover, if µ is an ergodic
measure of maximal dimension on � then at least one of the following conditions
holds:

(i) There exits 0 ≤ p ≤ tu and 0 ≤ q ≤ t s such that µ = νp,q ;
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(ii) λu(µ) = min{λu(ν) : ν ∈ M} and λs(µ) = max{λs(ν) : ν ∈ M}.

Remark. Rams [18] gave an example of a piecewise linear horseshoe with
two distinct ergodic measures of maximal dimension. In fact, it is an open and
apparently rather difficult problem to determine whether on hyperbolic sets of
surfaces the number of ergodic measures of maximal dimension is in general finite.

We now discuss generalized two-sided physical measures. The following
result is a version of Theorem 2 for general hyperbolic sets. The proof is entirely
analogous.

Theorem 15. Let f be a C1+ε-surface diffeomorphism, and let � be a locally max-
imal non-attracting hyperbolic set of saddle-type such that f |� is topologically
mixing. Then f has a generalized two-sided physical measure on �. Moreover, µ

is a generalized two-sided physical measure if and only if µ is an ergodic measure
of maximal dimension.

Remark. We note that in contrary to the case of hyperbolic Hénon maps
we are not able to conclude the finiteness of the set of generalized two-sided
physical measures. This is due to the fact that in the general case the ergodic
measures of maximal dimension cannot be identified as equilibrium measures of
a one-parameter family of potentials (compare Theorems 12 and 14).

The following theorem is an analogue of part (i) of Theorem 3 for general
hyperbolic sets.

Theorem 16. Let f be a C1+ε-surface diffeomorphism, and let � be a locally max-
imal non-attracting hyperbolic set of saddle-type such that f |� is topologically
mixing. Let µ+, µ−, µ be as in Theorems 13 and 15. Suppose that | det D f (x)| = 1
holds for all x ∈ �. Then µ = µ+ = µ− and µ is the unique ergodic measure of
full dimension.

Proof: Assume that | det D f (x)| = 1 for all x ∈ �. Then it follows from (12) that
νtu ,0 = ν0,t s , and νtu ,0 is the unique ergodic measure of full dimension. Using that
a measure of full dimension is also a measure of maximal dimension and applying
Theorems 13, 15 we may conclude that µ = µ+ = µ−. �

Remark.

(i) Note that Theorem 16 in particular holds if f is volume-preserving in a
neighborhood of �.
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(ii) We point out that part (ii) of Theorem 3 has no natural extension to general
hyperbolic sets on surfaces. In fact, it is easy to provide examples of
piecewise linear horseshoes with | det D f | 
≡ 1 for which the measures
µ+, µ− and µ are not pairwise distinct. The problem in the general case
is the lack of a cohomology relation between φu and φs as it occurs in the
case of hyperbolic Hénon maps (see Proposition 1).

6.2. Regular Dependence on the Diffeomorphism

Finally, we discuss the dependence of the dimension of the generalized phys-
ical measure on the diffeomorphism. Namely, we are interested as to how the
quantities dimH B+(µ+( f )) and dimH µ+( f ) vary with f.

More precisely, let f be a Cr -surface diffeomorphism (r large enough), and let
� be a locally maximal non-attracting hyperbolic set of saddle type of f such that
f |� is topologically mixing. Consider an open neighborhood U of � such that
� = ∩n∈Z f nU . Then (see for example(14)) there exists a neighborhood U of f in
the space of Cr -diffeomorphisms (with respect to the Cr -topology) such that for
all g ∈ U the set �g = ∩n∈ZgnU is a locally maximal non-attracting hyperbolic
set. Moreover, �g is of saddle type and g|�g is topologically mixing. We are
interested in the regularity of the maps

g 
→ dimH B+(µ+(g)), g 
→ dimH µ+(g).

It was proven by Mañe′ in Ref. 15 that the maps g 
→ tu
g , g 
→ t s

g are of class Cr−1.
Therefore, Theorem 13 and the corresponding version of Theorem 7 for g and �g

immediately imply the following:

Corollary 12. The map g 
→ dimH B+(µ+(g)) is of class Cr−1 in U .

Next, we consider the dimension of the generalized physical measure.

Theorem 17. The map g 
→ dimH µ+(g) is of class Cr−2 in U .

Proof: Consider the function Q:U × R
2 → R defined by

Q(g, p, q) = P(g,−pφu + qφs), (75)

where P(g, ·) denotes the topological pressure of g|�g . It follows from work of
Mañe′ in Ref. 15 that Q is of class Cr−1 in U . It is proven in (2) that the function
�:U × R

2 → R defined by �(g, p, q) = dimH νp,q (g) is of class Cr−2. Here
νp,q (g) denotes the equilibrium measure of −pφu + qφs with respect to g|�g

(with φu and φs defined with respect to g). Therefore, the result follows from
Theorem 13 and the fact that g 
→ tu

g is of class Cr−1. �
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We now consider the dependence of the dimension of the generalized two-
sided physical measures. Namely, we are interested in the regularity of the map

δ(g) = sup{dimH B(ν) : ν ∈ ME (g)}. (76)

We note that if µ(g) is any generalized two-sided physical measure for g on �g

then δ(g) coincides with dimH B(µ(g)). It follows from (2) and Theorem 15 that the
map δ defined in (76) is continuous. Moreover, if g is close to a volume-preserving
map we even obtain a higher regularity.

Theorem 18. Assume that f is volume-preserving . Then there is a neighborhood
V ⊂ U of f such that for all g ∈ V the map g has a unique generalized two-sided
physical measure on �g. Moreover, the map g 
→ δ(g) is of class Cr−3 in V .

Proof: The result is a consequence of [2, Theorem 11] combined with Theorem
15. �

Finally, we apply our results to the family of hyperbolic Hénon maps. We
define the parameter space H by

H = {(a, b) ∈ R
2 : fa,bis a hyperbolic Hénon with maximal entropy}.

For (a, b) ∈ H let µ+(a, b) denote the unique generalized physical measure of
fa,b given by Theorem 8. Moreover, let δ( fa,b) be defined as in (76) with respect
to fa,b. The following result is an immediate consequence of Corollary 12 and
Theorems 17, 18.

Corollary 13. The maps (a, b) 
→dimH B+(µ+(a, b)), (a, b) 
→dimH µ+(a, b)
are real-analytic in H. Moreover, if (a0, b0) ∈ H such that fa0,b0 is volume-
preserving, then (a, b) 
→ δ( fa,b) is real analytic in a neighborhood of (a0, b0).
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